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We develop a theoretical analysis of the displacement of inviscid fluid particles and 
material surfaces caused by the unsteady flow around a solid body that is moving 
away from a wall. The body starts at position hs from the wall, and the material 
surface is initially parallel to the wall and at distance hL from it. A volume of fluid 
D f +  is displaced away from the wall and a volume D f -  towards the wall. D f +  and D f -  
are found to be sensitive to the ratio hL/hs.  The results of our specific calculations 
for a sphere can be extended in general to other shapes of bodies. 

When the sphere moves perpendicular to the wall the fluid displacement and 
drift volume Df+ are calculated numerically by computing the flow around the 
sphere. These numerical results are compared with analytical expressions calculated 
by approximating the flow around the sphere as a dipole moving away from the wall. 
The two methods agree well because displacement is an integrated effect of the fluid 
flow and the largest contribution to displacement is produced when the sphere is more 
than two radii away from the wall, i.e. when the dipole approximation adequately 
describes the flow. Analytic expressions for fluid displacement are used to calculate 
D f ,  when the sphere moves at an acute angle a away from the wall. 

In general the presence of the wall reduces the volume displaced forward and 
this effect is still significant when the sphere starts 100 radii from the wall. A 
sphere travelling perpendicular to the wall, ct = 0, displaces forward a volume 
Df+(O) = 4 ~ c a ~ h ~ / 3 ~ / ’ h ~  when the marked surface starts downstream, or behind the 
sphere, and displaces a volume Df+(O) - 2na3/3 forward when it is marked upstream 
or in front of the body. A sphere travelling at an acute angle away from the wall 
displaces a volume Df+(a) - D,+(O) cos a forward when the surface starts downstream 
of the sphere. When the marked surface is initially upstream of the sphere, there 
are two separate regions displaced forward and a simple cosine dependence on a is 
not found. 

These results can all be generalized to calculate material surfaces when the sphere 
moves at variable speed, displacements no longer being expressed in terms of time, 
but in relation to the distance travelled by the sphere. 

1. Introduction 
A region of inviscid fluid is marked with some dye and a solid body is introduced. 

If the body then moves at a constant speed, dye close to where the body passes is 
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displaced forwards whereas dye far from the centreline is displaced backwards (see 
the experiments of Lance & Naciri 1992). It is now widely recognized that quantifying 
such displacement is the key to understanding and quantifying two-phase problems. 
In many cases the displacement due to the body is as important as its contribution 
to velocity fluctuations and diffusivity of the flow or to the pressure drop from its 
drag: for example, in boiling (Beer & Durst 1968) and gas/liquid flows in diverging 
and converging pipes (Kowe et al. 1992). Moving volumes with closed surfaces also 
occur in inhomogeneous fluids and are produced by regions of localized vorticity, 
such as Hill’s spherical vortex. These moving volumes cause an irrotational flow in the 
surrounding fluid similar to that caused by moving bodies, and are instructive models 
for understanding the effects of heat and mass transfer by the outward ejection of 
vortical eddies from the wall region in turbulent flows. 

Darwin (1953) examined fluid displacement by calculating the deformation of a 
large marked-fluid surface situated initially far upstream of the body and perpendic- 
ular to the direction in which the body travels. The flow around the body distorts the 
material surface, displacing fluid forward in regions close to where the body passes, 
and displacing fluid far from the body backward. Darwin (1953) defined the drift 
volume ~ a kinematic concept - to be the volume between the final and initial position 
of the marked surface. He then established that under certain conditions the drift 
volume is equal to the volume of fluid associated with the added mass of the body - 
a dynamic concept. This important result has been applied to the study of generation 
of vorticity by bodies moving in weakly sheared flow (Lighthill 1956; Auton 1987), 
and in novel experiments by Bataille, Lance & Marie (1991) to calculate the added 
mass of spherical bubbles. It is more usual to express the drift volume in terms of 
the added-mass coefficient, which is the ratio of the volume of fluid associated with 
the added mass to the body’s volume. The added-mass coefficient of a sphere is i, 
and of a circular cylinder is 1. 

In unbounded flow, the drift volume is critically dependent on how the drift volume 
is evaluated since the defining integral is not convergent. Questions of convergence 
were discussed by Darwin (1953) and Benjamin (1986), and recently Eames, Belcher 
& Hunt ( 1994) have shown that convergence is intimately related to the evaluation of 
fluid momentum in an unbounded region. Darwin’s (1953) original result is obtained 
only when the marked surface is initially located far upstream of the body. The 
variation of the drift volume with the initial position of the marked surface was 
shown by Eames et al. (1994) to have a large effect on the volume of fluid displaced 
forward. For instance, when the marked surface is initially downstream of the body, 
the volume displaced forward may be larger, e.g. of the volume of a sphere, or 2 
times the volume of a circular cylinder. 

Studies of fluid displacement by a solid body moving in bounded geometry have 
been limited to a body travelling along an infinite channel, where the drift volume is 
equal to the negative of the body’s volume. A simplification arises in this problem 
because the added mass is constant, and results from the analysis of displacement in 
unbounded flow are applicable. As with unbounded flow, fluid in the region close to 
where the body passes is displaced forward, but by the conservation of mass, there 
is a return flow due to the volume displaced forward and the volume of the body 
(see figure la). This leads to a negative displacement spread uniformly across the 
channel width. 

In this paper we investigate fluid displacement by a solid body moving away from 
a wall, using for illustration the flow around a sphere (see figure 2). Two new 
aspects of the calculation are that the fluid particles are marked at arbitrary positions 
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FIGURE 1. Schematic showing (a) fluid displacemcnt in channel flow and ( b )  fluid displacement by 
a vapour bubble moving away from a wall. Material is carried across the thermal boundary layer. 

relative to the sphere, and that the added mass of the body is time dependent. Lamb 
(1932) established that the added mass of the sphere increases close to the wall, 
and since added mass contributes to fluid drift we expect the presence of the wall 
to increase the volume of fluid displaced forward. However, the wall inhibits fluid 
motion perpendicular to the wall, thereby decreasing the volume of fluid displaced 
forward. Which of these effects dominates and why? 
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FIGURE 2.  Distortion of a material surface by a sphere moving away from a wall. 

We require a notation which refers to the initial position of the marked plane, and 
have adopted the following terminology: upstream and downstream refer to the initial 
position of the marked surface relative to the body, so that a surface marked upstream 
is initially in front of the body; following Darwin (1953), we refer to displacement 
forwards (in the direction of the body) as drifi, and displacement backwards as reflux. 

The paper is structured in the following way. In $2 the flow around a sphere moving 
away from a wall is calculated by expanding the velocity potential as an infinite series. 
The flow is approximated by truncating the series expansion after the first term and 
the displacement of a fluid particlc is calculated in 83. The analytic approximation 
to displacement and drift volume is compared with the full numerical calculation 
when the sphere moves perpendicular to the wall. In 64, analytic expressions for 
displacement are integrated to evaluate the drift volume when the sphere travels 
away at an angle to the wall. 

The results are likely to be of practical use in understanding ‘nucleate boiling’. 
During boiling, vapour bubbles are generated on a heated plate and detach when 
the buoyancy force acting on them excceds the surface tension force which keeps 
them anchored. As the bubbles detach and rise into the fluid bulk, they displace 
hot fluid into the colder ambient fluid leading to heat transfer (see figure lh). The 
volume displaced forward through the thermal boundary layer is quickly mixed with 
the cooler ambient fluid, leading to an increase in heat transfer between the wall and 
fluid. 

2. Potential flow due to a sphere moving away from a wall 
The fluid flow, uf, around the sphere is assumed to be irrotational and so can be 

expressed in terms of the gradient of a scalar potential 4, u j  = V$, which from the 
continuity equation must satisfy Laplace’s equation : 

v24 = 0. (2.14 
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Following Batchelor (1967, Chap. 6), the velocity field uf is linearly related to the 
velocity of the sphere, U(t) ,  

(2.lb) 

where 4(") are the velocity potentials associated with the sphere moving at a unit 
speed in the direction of the unit vectors d"), and X J t )  is the position of the body. 
The velocity potential of fluid around a sphere moving perpendicular to the wall, @ l ) ,  

can be expressed in terms of an infinite series of dipoles, and this solution is well 
known (Lamb 1932). When the sphere is moving parallel to the wall, it is possible 
to express the velocity potential, # 2 ) ,  in terms of an infinite series of multipoles, a 
solution recently derived by Kok (1993) and Li, Schultz & Merte (1993). 

2.1. Analytical solution 
Consider the incompressible inviscid flow around a sphere of radius a and at height 
h above a wall moving away from a wall at a constant speed U and at an angle a, as 
shown in figure 3. The z-axis is perpendicular the wall, and the sphere travels in the 
( z ,  x)-plane. The kinematic boundary conditions satisfied on the wall and sphere are 

-=o ,  z = o ,  
a 
aZ 

(2.3a, b)  

where (r ,  0, q) is the spherical coordinate system centred on A. Equation (2.3~) is the 
boundary condition due to the sphere moving at unit speed perpendicular to the wall 
and (2.3b) is due to the sphere moving with unit speed parallel to the wall. 

By symmetry, the potential flow around the sphere moving away from the wall 
is identical to the flow around two spheres, A and B, moving apart (see figure 3). 
Defining a new spherical coordinate system centred on B as ( r ' ,Of ,q ) ,  the boundary 
condition which must be satisfied on B is 

Calculation of flow around the sphere moving away from a wall reduces to solving 
the flow around two identical spheres travelling parallel at unit speed, and separating 
with unit speed. 

The velocity potential of the flow around two separating spheres is well known and 
has been calculated using the method of images (Lamb 1932, p. 122), which generates 
a sequence of dipoles of suitable strengths and positions to satisfy the boundary 
conditions on both spheres. In Cartesian coordinates, the velocity potential due to 
two spheres separating with unit speed is 

where the recurrence relations for generating the position and strengths of the dipoles 
are a0 = h, a1 = h - a2/h,  ai = h - a2/ai-l and po = Za , p L / p i - ,  = 

The velocity potential of two spheres travelling parallel is calculated as an infinite 
series of multipoles rather than dipoles. (The method of images relies on the dipole 
pointing towards the centre of a sphere, and cannot be applied to calculate the 

1 3  
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FIGURE 3. Notation for the calculation of the potential flow around spheres moving apart. 

potential when the sphere is moving parallel to the wall.) The form of the potential 
is 

,,1A,P,'(cos0) + II,,B,Pi(cosB') 
an+2 

n=l  

where the associate Legendre polynomials (Gradshteyn & Ryzhik 1980) are 

There have been many attempts to calculate the coefficients, A, and B,, as an 
asymptotic expansion in a / h  (Hicks 1880), but only recently (Kok 1993; Li et al. 
1993) have recurrence relations for the coefficients A ,  and B, in terms of a / h  been 
derived. Kok (1993) expanded the coefficients c, in a series in a/h,  which was 
evaluated to an accuracy of ( ~ / 2 h ) ~ O .  Li et al. (1993) calculated the coefficients to be 
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where 

and c = a/2h. 
When the sphere is close to the wall, a large number of terms need to be evaluated to 

get a good approximation to the flow, but far from the boundary (typically h > 2.0a), 
the fluid flow is dominated by the first terms of (2.5) and (2.6) which combine to give 
the velocity potential 4 = U14(l)  + U24(2)  - 4A + 4B, where the velocity potential of 
an isolated sphere A is 

(x - U t  sin M )  sin a + ( z  - hs - Utcos a )  cos a 

((x - U t  sin + y 2  + ( z  - hs - U t  cos ~ ) ~ ) 3 / ~  
- --a3 l u  

2 

and the velocity potential of B is 

1 (x-Uts incc)s ina- (z+hs+Utcosa)cosa  
2 

4B - - - a ’ ~  (2.10) 
((x - UtsinCO2 + y 2  + ( z  + hs + U t c o s ~ ) * ) ~ / ~ ’  

The velocity potential 4 = U,$(’ )  + U24(2) describes the flow around a sphere moving 
at a speed U ,  perpendicular to a wall, and at a speed U2 parallel to the wall; the 
components can be written concisely as U ,  = - U ( t ) .  The speeds of spheres A and 
B are U = ( U ;  + U;)lj2,  and the angle at which sphere A moves away from the wall 
is tana = U2/U1. The approximation 4 - 4~ + 4 8  describes the flow around two 
separating dipoles and is used in later sections to calculate analytic expressions for 
fluid displacement and the partial drift volume. 

2.2. Numerical evaluation 
The coefficients c, given in (2.9) are required in the calculation of the flow around the 
sphere moving parallel to the wall and were evaluated numerically. These coefficients 
are expensive to evaluate because the summation is over many indices, and so we 
approximated them by truncating the series in (2.9) at the seventh term, and using 
Shank’s transformation to accelerate convergence (see NAG Fortran Library). We 
obtain agreement to within 10% of the values of c, tabulated in Li er al. (1993) and 
Kok (1993). 

To determine the accuracy of truncating the series (2.5) and (2.6), we exam- 
ined the fluid velocity on the surface of the sphere to see the degree to which 
the boundary conditions on the sphere are satisfied. We calculated the differ- 
ence between the boundary condition on the sphere and that of the truncated 
velocity potential expansion in the y = 0 plane, firstly keeping the height of the 
sphere fixed and increasing the number of terms (figure 4a,b), and secondly fix- 
ing the number of terms and increasing the height above the wall (figure 4c,d). 
The conclusion from these calculations is that when the sphere is far from the 
wall, h > 2.0a, the flow is well described by the two-dipole approximation, with 
errors in satisfying the boundary conditions typically less than 10%. As h in- 
creases, the two-dipole approximation becomes a better approximation to the flow, 
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FIGURE 4. The error between the boundary condition on the sphere (2.3) and the value calculated by 
truncating the series expansion of the velocity potential after the n-th term, la4approx/ar - L@/arl/U. 
In (a)  and (b) ,  the sphere is touching the wall ( h  = l.Oa), and the number of terms evaluated in 
the approximation is increased. The two-dipole approximation is plotted (. . . . . .). In ( c )  and ( d ) ,  
the two-dipole approximation is used and h is increased. The sphere moves parallel to the wall (i.e. 
a = x / 2 )  in (a)  and (c). but moves perpendicular to the wall (i.e. a = 0) in (6) and (d). 

and the error in satisfying the boundary conditions decreases. This result is cen- 
tral to establishing an analytic framework to calculate fluid displacement near a 
wall. 

3. Fluid particle displacement 
We consider the motion of a fluid particle initially marked at (xg, yo, hL) in the 

Cartesian frame of reference. The marked fluid particle is displaced by the fluid 
motion to ( x f ,  yf, zf) in time t, where the vertical position of the fluid particle is given 
by 

The fluid displacement depends only on the final and initial positions of the body 
and the trajectory between these two points, but not the speed of the body. For 
the specific case of a translating sphere, the vertical displacement can be calculated 
numerically by solving equation (3.1) using the series expansion of 4 derived in the 
previous section. We calculate an analytic expression for fluid particle displacement, 
z f ( t ) ,  by truncating the series expansion for 4 after the first term. 
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3.1. Analytical expression 
The displacement of the marked particle can be re-written as 

34 1 

where 4A and 4B are the velocity potentials of the flow induced by spheres A and B 
respectively in the sense of (2.1b). We linearize (3.2) in the sense that the displacement 
due to two spheres is approximately equal to the sum of the displacements due to 
one sphere, in the absence of the other. The total displacement is approximately 
zf(t) - hL + zA(t) + zB(t), where zA(t) is the fluid displacement due to sphere A in 
the absence of sphere B, and similarly for zB(t). We use expressions for the fluid 
displacement caused by the movement of an isolated sphere developed by Eames et 
al. (1994). 

The displacement of a fluid particle along the z-axis due to sphere A is calculated 
by projecting the displacement, which lies primarily in the plane z = x cot a + hs, on 
to the z-axis. We define the local coordinate system ([, y), with the origin at the initial 
position of the sphere, a unit vector pointing in the direction in which sphere A 
travels and 4, a unit vector perpendicular to t .  The marked particle has an initial 
position (lo, q o )  in the ([, y )  frame of reference, and (xg, yo, h L )  in the Cartesian frame; 
these coordinates are related by 

112 yo = (yo’ + (xo cos a + (hs  - h L )  sin a)’) , 

and l o  = xo sina + (hL  - hs)cosa. From figure 3 we see that the unit vector in the 
z-direction is 2 = cos a% + sin a@, so that 

The fluid displacement in the z-direction due sphere A is 

zA(t) = 1 dzdt 84A = 1‘ Vq5A - i d t  = cos a 

The first term on the right is the displacement of the fluid particle in the direction in 
which the sphere travels, which Eames et al. (1994) show is equal to 

where q = IV4,l. The asymptotic properties of Darwin’s (1953) drift volume, 
J:q2/Udt, first calculated by Lighthill (1956), are restated here for the situation 
when the marked fluid element is initially in front of the sphere (hL > hs + a) :  

(3 .6~)  

4a 
0 << 0.17~. (3.6b) 
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FIGURE 5. Numerical calculation of Darwin's drift (-) compared with the asymptotic 
expressions (3.6) (- - - -). 

When the marked particle is initially behind the sphere (i.e. hL < hs - a) ,  

In the intermediate range 0.17a < yo < 2.5a, J"(q2/U)dt is calculated numerically, as 
shown in figure 5. 

The second term on the right in (3.4) is the displacement along the y-axis. Now the 
initial and final values of y, namely yo and limq, are not equal, but this contribution 
to the displacement is typically small and can be neglected. To see this, consider the 
second term in (3.4), namely 

t+m 

(yo - lim y )  sin a. (3.7) 
t'rn 

In terms of the initial position it can be shown (see Eames et al. 1994, equation 2.30) 
that 

When (0 >> qo, the contribution from (3.7) is of order 

which is negligible when the initial separation of the sphere and marked surface is 
large. The total fluid particle displacement caused by sphere A is approximately 

(3.10) 

Since sphere B moves away from all marked particles, the contribution from 
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J(IV4!)B12/U)dt to the displacement is negligible and so 

Z B ( t )  - c o s a g j ;  (3.11) 

The total displacement of a fluid particle along the z-axis, which is initially located 
at z f ( 0 )  = hs, is 

This expression is valid providing the sphere is more than two radii away from the 
wall. A comparison between (3.12) and a numerical calculation shows that (3.12) 
accurately predicts displacement even when the sphere is initially close to the wall. 
The specific form of the above equation is interesting since the third term on the 
right-hand side is always positive and is insensitive to the initial separation of the 
sphere and fluid particle lo (see 3.6a), in contrast to the second term which is sensitive 
to l o  and may be positive or negative. 

3.2. Numerical calculation of ,fluid particle displacement 
When the sphere moves perpendicular to the wall, the displacement was calculated 
by solving (numerically) 

dx 84 dy - &J dz 86 
- - _ -  - (3.13) 

dt ax’ dt d y ’  dt d z ’  

subject to the initial conditions x = xo, y = yo, z = hL at time t = 0. Since in this 
particular case the flow is axisymmetric, it is sufficient to fix yo = 0 and examine 
the displacement for positive xo. The fluid velocity components were calculated 
numerically by truncating the series expansion of velocity potential (2.5) after a large 
number of terms. A comparison between the analytical approximation to displacement 
(3.12) and the numerical solution is shown in figure 6(a,b). Because of the difference 
in magnitude of positive and negative displacements they are plotted with different 
scales - a logarithmic scale for positive displacement and a linear scale for negative 
displacement. Figure 6(a,b) shows that the region displaced forward is a circle centred 
on the z-axis and that the deformed surface cuts the plane zf = hL at one point. 
The agreement between the numerical solution and the analytic approximation for 
displacement is good despite the sphere being initially located close to the wall. This 
is at first surprising since the analytic approximation to displacement is based on the 
two-dipole approximation, which is not an adequate description when the sphere is 
close to the wall (see figure 4b). However the integrated effect of the fluid flow on the 
fluid displacement means that the main contribution comes from when the body is 
far from the wall, i.e. when h > 2.0a, where the two-dipole approximation is a good 
description of the flow. 

The accuracy of the analytical expression to describe displacement, when the sphere 
moves perpendicular to the wall, suggests that the same approach should be applicable 
when the sphere moves at an acute angle away from the wall. Figure 6(c,d) shows only 
the analytic expression for displacement plotted for fixed values of the initial position 
of the sphere and marked surface, but with varying angles at which the sphere moves 
away from the wall. The origin of each of the curves plotted in figure 6(c,d) is 
different; the abscissa is now x - ( A L  - hs) tan a. Also, the horizontal range is chosen 
to coincide with the scale on figure 9, where the regions of positive displacement are 

- - -  - - 
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FIGURE 6. Numerical calculation of displacement (-) is plotted for comparison with analytical 
approximations (. . . . . .) (3.12). Note, in (a) and ( b )  we plot the graphs with a logarithmic scale 
on the positive vertical axes, and with a linear scale on the negative axes; consequently we see a 
discontinuity in the graph (see main text). In both (a) and (b)  the sphere is initially at hs = 2 . 0 ~  and 
moving perpendicular to the wall; the marked surface is either initially in front of the sphere, as in 
(6) where hL = 3.0a,4.0a, 5.0a, 6.0a), or behind the sphere, as in (a) where hL = 0.25a, 0.5a, 0.75a,l.Oa. 
Only analytic expressions for displacement are plotted in ( c )  and ( d )  when the sphere moves at an 
angle away from the wall. In both ( c )  and (d )  the initial position of the marked surface and sphere 
are fixed (hs = 2.0 and hL = 0% in c )  and (ks  = 2.0~1, hL = 4 . 0 ~  in d ) .  The angle at which the 
sphere moves away from the wall is varied t( = 0, h n ,  i n ,  &n, gn 
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plotted. We see clearly that one effect of the acute angle of ejection is that the fluid 
displacement is reduced. 

A significant difference which arises when the sphere moves at an acute angle to 
the wall is that there may be two regions where fluid is displaced forward, as seen 
in figure 6 ( d )  and 9(b).  As we shall see in the next section, this gives rise to an extra 
contribution to upstream drift volume. 

4. Partial drift volume in the presence of a solid boundary 
4.1. DeJlnztion 

Thejuid partial drft volume, D,, was defined by Eames et al. (1994) to be the volume 
of fluid between the final and initial position of a finite-sized marked surface, which 
is initially a finite distance from the body. For instance, the partial drift volume 
associated with a circular disk of radius & and height hL above the wall is 

Df(&) = [ 1%% Zf(t) - h d R  dR d% (4.1) 

where limzf(t) is the ultimate position of a fluid particle initially marked on the disk. 
Using the notation defined in the introduction, we refer to the volume of fluid 

displaced forward, away from the wall (see figure 2), as the drift volume, Df+,  defined 

1'5 

by 

D f +  = [" lx  max (limzl(t) t-72 - hL.0) RdRdq.  

Likewise, the volume of fluid displaced backwards is referred to as the reflux volume, 
D f - ,  and can be related to D f ,  by 

Dt-  = lim D j ( & )  - D,+. (4.3) 

In both cases, the term is prefixed by upldownstream depending on whether that 
material surface is initially marked upstream or downstream of the body. Where 
appropriate, the symbols Df+, Df- are prefixed by subscript u or d. By calculating 
the partial drift volume associated with a large disk, lim Df(&), we can reduce 

Ro+= 
the problem of calculating the volume displaced backwards and forwards to just 
the calculation of Dj+;  the up/downstream reflux volume is then given through the 
relation (4.3). 

Ro-r 

4.2. Asymptotic expressions .for partial drlji volumes when the marked plane is large 
The partial drift volume associated with a marked circular plane of radius & is 
evaluated using (4.1) and (3.12) to give 

D f ( & , r ) = c o s i C L h  [ 4 A  - d ) B  ] R d R d q + c o s a  ih 1' $dt 2nR dR. (4.4) 
r=O 

The partial drift volume thus has two contributions: the first is related to the 
momentum and the second to the kinetic energy of the fluid. The first is more 
sensitive to the initial separation between the sphere and marked surface than the 
second. The magnitude of the second term decays rapidly away from the sphere. 
The first term on the right-hand side may be evaluated by changing the order of 
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when hL < hs - a, and 

when hL > hs+a. The second term on the right-hand side of (4.5) can be approximated 
by 

when hL > hs + a, where :nu3 is the drift volume of a sphere (Darwin 1953). 
Combining (4.5) and (4.7), we find that the partial drift volume associated with a 
large marked plane is 

when the surface is downstream of the sphere, and 

-2na3 cos2 a + +3 cos a 

when the surface is utxtream. 
From (4.8) and (4.9) we see that the partial drift volume is a quadratic function of 

the new variable cos a. The first factor of cos a is expected because the displacement 
lies primarily along the (-axis, which is projected onto the z-axis. The second cosa 
factor arises from reflux which depends on the initial position of the plane; drift is 
insensitive to the initial position of the plane and does not contribute to a second 
cosa factor. 

There are four length scales: hL - hs,  hs, & and a, so that three dimensionless 
variables &/hs, (hs - hL)/u, and & / a  determine the solution. We concentrate on 
those limits which lead to relationships between the reflux and drift volumes (4.3). 
For a small radius 

(4.10) 

whereas for a large radius 

lim .~f(&) - - h a 3  cos2 a + 3cu3 cos a, (4.11) 
Ro/hs+a 

which means that more fluid is brought in towards the wall. When the surface is 
marked downstream of the sphere, 

(4.12) 
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and 

(4.13) 

The above analysis can be generalized to the calculation of the partial drift volume 
of an arbitrarily shaped two- or three-dimensional body moving away from a wall, 
where the dipole strength in unbounded flow is prescribed (Eames 1995). 

4.3. Analytic expression f o r  the upldownstream d r f t  volume when the sphere moves 

We have seen in figure 6(a,b), that when the sphere moves perpendicular to the wall 
the flow is axisymmetric and the marked surface cuts the plane zf = hL at one radial 
position, R = Rf. The fluid displaced forward is contained within the region R < Rf, 
whereas the fluid displaced backwards is outside this region and so the drift and 
reflux volumes can be written succinctly as 

perpendicular to the wall 

(4.14) 

The partial drift volume associated with a large surface depends on the initial location 
of the marked surface relative to the sphere (from (4.10) and (4.11)): 

(4.15~) 

Given Df+, we can evaluate Df_ directly using (4.14) and (4.15). The radial position, 
R = Rj, can be calculated by solving the equation lim z f ( t )  = hL. When the surface is 
marked downstream of the sphere, hL < hs -a,  a fluid particle with zero displacement 
satisfies 

t+cc 

There are two interesting cases to examine: firstly when the wall effect is negligible 
(hL - hs - a ) ,  and secondly when it is significant (hL << hs). Under these two limits, 
it can be shown from (4.16) that 

(4.17) 

The downstream drift volume is calculated using the expression for Rf, (4.17), substi- 
tuted into (4.9): 

(4.18) 

The above equation tells us that when hs - 100a, the largest value of dDf+ differs 
by 10% from its value calculated in unbounded flow, namely nu3, which shows the 
significant long-range effect of the wall. 

The variation of the drift volume with the location of the surface, hL, can be 
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estimated from displacement along the centreline, 
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a3 2a3 hL - a3 
t'm limzf(t)" ((Ut - hs + h ~ ) ~  ( U t +  hs + h ~ ) ~  

The volume can be estimated by calculating the region of radius Rf which experiences 
a positive fluid velocity. In unbounded flow Rj < 2(hs - hL)2 - 2hi, and so in this 
case the radius of the region displaced forward is Rf - $hs, agreeing with (4.17). 
The volume displaced forward is dDf+ - 2 a 3 h ~ / h i  x nRj - 4na3(hL/hs). This simple 
argument shows how the downstream drift volume varies with hL, agreeing with 
(4.18). However the coefficient is over-estimated because the average displacement is 
much less than 2a3hL/hi. 

When the marked surface is upstream of the sphere, hL > hs +a, the radial position 
Rf is obtained by solving 

+Jdm $dt - hL. (4.19) 
lim zf(t) - hL - ( h ~  - hs)a3 - ( h ~  + k ) a 3  
t+m 2 ( ( h ~  - hs)2 + Rf)3/2 2((hL + hS)2 + Rf)3/2 

An asymptotic solution for Rf can be generated when 2 . 5 ~  << Rf << hL - hs, using a 
binomial expansion of (4.19) in Rf and an asymptotic approximation to J(q2/U)dt, 
(3.6a), is used to show 

, 2 . 5 ~  << Rf << hs - hL, 
9n(h i  - h;)2a3 

64(h; + h i )  
(4.20) 

from which the upstream drift volume can be calculated: 

The upstream drift volume slowly approaches the value calculated by Darwin (1953) 
in unbounded flow, $ca3, as the initial height of the sphere increases. 

Comparing (4.18) and (4.21) shows paradoxically that a body can transport more 
material away from the wall when the initial position of the material surface is 
downstream and closer to the wall, than when it starts upstream of the body and 
far from the wall. The reason is that there is a return flow due to the body moving 
away from the wall, (4.15b), which reduces the volume displaced forward, 5na3, when 
the surface is upstream of the body. There is no return flow of fluid when a surface 
is initially located downstream, (4.15a), and so the drift volume is typically larger, 
dDf+ - nu3. This suggests that vapour bubbles formed above the surface transport 
more heat away from the wall than those formed close to the wall! 

4.4. Numerical calculations of the partial drift volume 
When the sphere moves perpendicular to the wall, Df+ was also calculated numerically 
by following a large number of fluid particles. The radius, Rf ,  was estimated by linearly 
extrapolating between a fluid particle displaced forwards and the adjacent particle 
which is displaced backwards. The up/downstream drift volume was calculated by 
integrating the displacement over a circular disk of radius Rf centred on the z-axis. 
Figures 7 and 8 show a comparison between the numerical solution of Rf and Df+ 
and the analytic approximations. Analytic expressions for Rf (4.17) and Df+ (4.18) 
are plotted for hL < hs - a. When hL > hs + a, the region displaced forward is 
calculated by first solving (4.19) numerically for Rf ,  and the upstream drift volume is 
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0 1 2 3 4 

FIGURE 7. Radius of the region displaced forward ( R j )  when the sphere moves perpendicular to 
the wall. The numerical solutions (-) are plotted for comparison with the analytical expressions 
(4.17) (0) for hL < hs - a, and with a numerical solution of (4.19) for hL > hs + a (+). The initial 
height of the sphere, h s / a  is varied: 1.0,1.5,2.0,3.0,4.0. 

evaluated using a combination of analytic expressions to calculate the first term on 
the right-hand side of (4.4) and numerical integration to evaluate the second term. 
Both figures show a good agreement between the numerical and analytical solutions 
when the sphere moves perpendicular to the wall, where the analytical expressions 
are based on the two-dipole approximation of the fluid flow. 

The analytical expressions for displacement were used to calculate D,+ when a > 0. 
Firstly, the region of fluid displaced forward was calculated from (3.12) and the 
results are shown in figure 9. A striking difference between the distortion of a 
material surface when the sphere travels at an acute angle away from the wall and 
travels perpendicular to the wall is that an additional region of fluid is displaced 
forward (see figure 9b with a = 271/5). 

Displacement is integrated over the regions plotted in figure 9, in order to evaluate 
Df+, which is shown in figure 10(a,b). The accuracy of the analytic expressions for 
displacement depends on the integrated effect of the flow on displacement, so that a 
sphere travelling at a steep angle spends more time closer to the wall, in the region 
where the dipole approximation does not adequately describe the flow. For this 
reason we have limited our attention to a < 0.471. On first inspection we might expect 
that since D, - C O S ~ C I  the downstream drift volume to will vary as nDf+ - cos2a. 
However, the numerical results show that dDf+ varies more closely with COSCI. This 
is because as the volume of the region in which fluid is displaced forward increases, 
the average displacement decreases. Therefore J(*/U)dA is independent of a, and 
dDf+ - cos CI [{*/ U)dA varies as cos u. 
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FIGURE 8. Volume of fluid displaced forward, Df+, when the initial height of the sphere hs is varied 
relative to initial position of sphere: hs /a  = 1.0,1.5,2.0,3.0,4.0. The full numerical solution is shown 
by -. Analytical expressions for Df+ (4.18) plotted for hL < hs - a as 0. For hL > hs + a, 
the approximation (+) is obtained by integrating the expression for displacement (3.12) using a 
combination of analytical and numerical methods. 

In contrast, we would have expected the upstream drift volume to vary like cosa, 
but figure 10(b) shows that this agreement is poor. The regions of principle drift and 
reflux no longer overlap and the two regions are displaced forward (figure 9b). The 
area of the regions increases and so JJ(q2/U)dtdA increases. Therefore we would 
expect Df+(a)/Df+(O) to be larger than the cos a variation, which is indeed the case. 
There is no secondary region when a < 0 .26~~  and the contribution to J I f +  from 
the secondary region is 10% when a - 0.37~. These values are for hL = 4 . 0 ~  and 
h,y = 2.0~.  

5.  Conclusion 
We have calculated an analytic expression for the displacement of fluid by a 

sphere moving away from a wall, which we have tested by comparing with numerical 
solutions when the sphere moves perpendicular to the wall. Comparisons between the 
numerical solution and analytic expressions show good agreement despite the sphere 
starting close to the wall. The analytic expression for displacement is integrated 
numerically to calculate the drift volume when the sphere moves at an oblique angle 
away from the wall. We also find that the downstream drift volume shows a cosine 
dependence on the ejection angle, dDf+(a) - dDf+(o) cos a. 

We have seen that the dynamic and kinematic effects of the wall on the flow 
associated with a sphere are different. Although the added mass of the sphere is 
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FIGURE 9. The boundaries separating the region of positive and negative drift is plotted for different 
angles at which the sphere moves away from the wall (a)  when (a) the sphere is initially in front of 
the marked surface hs = 2.0u, h~ = 0 . 5 ~  and ( b )  the sphere is initially behind the marked surface 
hs = 2.0u, hL = 4 .0~ .  Thc solutions are calculated by solving numerically the analytical expressions 
for the particle displacement (3.12). See figure 6(c ,d)  for comparison. Note the secondary region 
in (b) .  
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FIGURE 10. Volume of material displaced forward for arbitrary angle Df+(a)  (0)  is plotted against a 
when (a)  the surface is downstream of the sphere (hs = 2.0, h~ = 0.5a), and (b)  when the surface is 
initially upstream of the sphere (hs = 2.0, hL = 4.0). For comparison, the function cosa is plotted 
(-). In (b) ,  the contributions from the two regions displaced forward are plotted (- - - -), the 
lower curve represents the contribution from the region bounded by ~ ~ ~ in figure 9(b). 
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larger near the wall (i.e. more force is required to accelerate it), it decreases quickly 
away from the wall, as i(1 + O(a3 /h i ) )  (Lamb 1932), as it tends to its value of in 
unbounded flow. On the other hand, the kinematic boundary condition on the wall 
has an opposite effect, reducing the normal displacement and the volume displaced 
forward decreases due to the presence of the wall. Furthermore there is a difference 
in how far the wall effect extends. The dynamical effect of the wall rapidly decays 
from the wall like O(a3/h3); the kinematic effect of the wall extends much further 
with a slower decay of D f +  like ( ~ / h ~ ) ~ / ’ .  The result of the competition between the 
wall effects is a decrease in the drift volume. 

We have shown that the volume displaced forward is sensitive to the initial location 
of the marked surface hL/hs,  and surprisingly that more fluid can be displaced 
forward when the sphere starts far from the wall, than when the sphere starts close to 
the wall. The return flow required by the conservation of mass is significantly larger 
when the marked surface is initially upstream rather than downstream of the sphere. 

The specific calculations in this paper for a sphere can be extended to other bodies 
by treating the body as a dipole of prescribed strength. In addition the added mass 
of the body is required which can be calculated from the body’s volume and dipole 
strength (see Eames 1995). This description will not be accurate for a body initially 
close to the wall. The results can be applied to the calculation of fluid displacement 
and drift volumes due to a body travelling at an arbitrary speed along a straight 
trajectory since the fluid displacement is independent of the speed of the body and 
dependent only on the final and initial position of the body. The results for z f ,  D f -  and 
D f ,  derived here in terms of time can be re-expressed in terms of the equivalent time 
t* defined in terms of the displacement of the sphere, t* = X J U O  = 1/Uo 1; U(t)dt, 
where UO is the characteristic speed. This may be relevant for the problem of bubble 
and sand particle motion near walls. 

In the context of heat transfer, the wall effect is obviously important. For instance, 
Beer & Durst (1968) used Darwin’s concept of drift to examine heat transfer by 
bubbles near heated walls, but ignored the effect of the wall and so overestimated 
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the effect of the bubbles. As we have shown Darwin’s (1953) relation between added 
mass and drift volume does not apply in these inhomogeneous flows. 
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